
GCSE
COMPUTER
SCIENCE
(8520)

Specification
For teaching from September 2016 onwards
For exams in 2018 onwards

Version 1.0 15 January 2016

aqa.org.uk

G
00575

Get help and support
Visit our website for information, guidance, support and resources at aqa.org.uk/8520

You can talk directly to the Computer Science subject team

E: computerscience@aqa.org.uk

T: 0161 957 3980

Copyright © 2016 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications, including the specifications. However, schools and colleges registered with AQA are permitted to copy
material from this specification for their own internal use.
AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales (company number
3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

http://aqa.org.uk/8520
mailto:computerscience%40aqa.org.uk?subject=

3

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Contents
1 Introduction 5

1.1 Why choose AQA for GCSE Computer Science 5
1.2 Support and resources to help you teach 5

2 Specification at a glance 8
2.1 Subject content 8
2.2 Assessments 9

3 Subject content 10
3.1 Fundamentals of algorithms 10
3.2 Programming 12
3.3 Fundamentals of data representation 18
3.4 Computer systems 22
3.5 Fundamentals of computer networks 25
3.6 Fundamentals of cyber security 27
3.7 Ethical, legal and environmental impacts of digital technology
 on wider society, including issues of privacy 29
3.8 Aspects of software development 29
3.9 Non-exam assessment 30

4 Scheme of assessment 40
4.1 Aims and learning outcomes 40
4.2 Assessment objectives 41
4.3 Assessment weightings 41

5 Non-exam assessment administration 42
5.1 Supervising and authenticating 42
5.2 Avoiding malpractice 43
5.3 Teacher standardisation 44
5.4 Internal standardisation 44
5.5 Commenting 44
5.6 Submitting marks 45
5.7 Factors affecting individual students 45
5.8 Keeping students' work 45
5.9 Moderation 45
5.10 After moderation 46

6 General administration 47
6.1 Entries and codes 47
6.2 Overlaps with other qualifications 47
6.3 Awarding grades and reporting results 48
6.4 Re-sits and shelf life 48
6.5 Previous learning and prerequisites 48
6.6 Access to assessment: diversity and inclusion 48

http://aqa.org.uk/8520

4 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Are you using the latest version of this specification?
 • You will always find the most up-to-date version of this specification on our website at

aqa.org.uk/8520
 • We will write to you if there are significant changes to this specification.

6.7 Working with AQA for the first time 49
6.8 Private candidates 49

http://aqa.org.uk/8520
http://aqa.org.uk/8520

5

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

1 Introduction
1.1 Why choose AQA for GCSE Computer Science
We’ve worked closely with teachers to develop a new GCSE Computer Science specification that’s as
inspiring to teach as it is to learn. This specification recognises the well established methodologies of
computing, alongside the technological advances which make it such a dynamic subject.

We’ve built on the most popular aspects of our current specification and added fresh features including
a computational thinking exam to provide an academically challenging programme of study for students
of all ability levels. You can choose from a range of programming languages for non-exam assessment,
enabling you to tailor your specification to the strengths and preferences of you and your students.

Our exam papers retain our commitment to clear wording and structure, helping students to progress
through each paper with confidence.

Students will complete this course equipped with the logical and computational skills necessary to
succeed at A-level, the workplace or beyond.

As part of our ongoing commitment to provide excellent support, you’ll see we’ve created fantastic
free teaching resources and can offer great value professional development courses. We’re also
collaborating with publishers to ensure you have engaging and easy-to-use textbooks.

You can find out about all our Computer Science qualifications at aqa.org.uk/computer-science

1.2 Support and resources to help you teach
We’ve worked with experienced teachers to provide you with a range of resources that will help you
confidently plan, teach and prepare for exams.

Teaching resources
Visit aqa.org.uk/8520 to see all our teaching resources. They include:
 • specimen papers and mark schemes to show the standards required and how your students’ papers

will be marked
 • dedicated subject advisors and exemplar specimens to guide you through non-exam assessment
 • sample schemes of work and lesson plans to help you plan your course with confidence
 • a range of easy-to-use, AQA approved textbooks
 • a phone and email based subject team to support you in the delivery of the specification
 • excellent professional development opportunities for those just starting out or the more experienced,

looking for fresh inspiration
 • training courses to help you deliver our computer science qualifications
 • subject expertise courses for all teachers, from newly qualified teachers who are just getting started

to experienced teachers looking for fresh inspiration.

http://aqa.org.uk/8520
http://www.aqa.org.uk/computer-science
http://www.aqa.org.uk/8520

6 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Preparing for exams
Visit aqa.org.uk/8520 for everything you need to prepare for our exams, including:
 • past papers, mark schemes and examiners’ reports
 • specimen papers and mark schemes for new courses
 • Exampro: a searchable bank of past AQA exam questions
 • exemplar student answers with examiner commentaries.

Analyse your students' results with Enhanced Results Analysis (ERA)
Find out which questions were the most challenging, how the results compare to previous years and
where your students need to improve. ERA, our free online results analysis tool, will help you see where
to focus your teaching. Register at aqa.org.uk/era

For information about results, including maintaining standards over time, grade boundaries and our
post-results services, visit aqa.org.uk/results

Keep your skills up-to-date with professional development
Wherever you are in your career, there’s always something new to learn. As well as subject specific
training, we offer a range of courses to help boost your skills.
 • Improve your teaching skills in areas including differentiation, teaching literacy and meeting Ofsted

requirements.
 • Prepare for a new role with our leadership and management courses.

You can attend a course at venues around the country, in your school or online – whatever suits your
needs and availability. Find out more at coursesandevents.aqa.org.uk

http://aqa.org.uk/8520
http://www.aqa.org.uk/8520
http://www.aqa.org.uk/era
http://www.aqa.org.uk/results
http://coursesandevents.aqa.org.uk/

7

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Get help and support

Visit our website for information,
guidance, support and resources
at aqa.org.uk/8520

You can talk directly to the
Computer Science subject team

E: computerscience@aqa.org.uk

T: 0161 957 3980

http://aqa.org.uk/8520
http://aqa.org.uk/8520
mailto:computerscience%40aqa.org.uk?subject=

8 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

2 Specification at a glance
This qualification is linear. Linear means that students will sit all their exams and submit all their non-
exam assessment at the end of the course.

2.1 Subject content
1 Fundamentals of algorithms (page 10)
2 Programming (page 12)
3 Fundamentals of data representation (page 18)
4 Computer systems (page 22)
5 Fundamentals of computer networks (page 25)
6 Fundamentals of cyber security (page 27)
7 Ethical, legal and environmental impacts of digital technology on wider society,

including issues of privacy (page 29)
8 Aspects of software development (page 29)
9 Non-exam assessment (page 30)

http://aqa.org.uk/8520

9

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

2.2 Assessments

Paper 2: Written
assessment

What's assessed

Theoretical knowledge from
subject content 3 – 7 above.

How it's assessed

 • Written exam: 1 hour 30
minutes

 • 80 marks
 • 40% of GCSE

Questions

A mix of multiple choice,
short answer, longer answer
and extended response
questions assessing
a student’s theoretical
knowledge.

Paper 1: Computational
thinking and problem-
solving
What's assessed

Computational thinking,
problem solving, code tracing
and applied computing as
well as theoretical knowledge
of computer science from
subject content 1– 4 above.

How it's assessed

 • Written exam set in
practically based
scenarios: 1 hour 30
minutes

 • 80 marks
 • 40% of GCSE

Questions

A mix of multiple choice,
short answer and longer
answer questions assessing
a student’s practical problem-
solving and computational
thinking skills.

Non-exam assessment

What's assessed

The non-exam assessment
(NEA) assesses a student's
ability to use the knowledge
and skills gained through the
course to solve a practical
programming problem.
Students will be expected
to follow a systematic
approach to problem-solving,
consistent with the skills
described in Section 8 of the
subject content above.

How it's assessed

 • Report: totalling 20 hours
of work

 • 80 marks
 • 20% of GCSE

Tasks

The development of a
computer program along with
the computer programming
code itself which has been
designed, written and
tested by a student to solve
a problem. Students will
produce an original report
outlining this development.

+ +

http://aqa.org.uk/8520

10 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3 Subject content
This subject content should be taught within a range of realistic contexts based around the major
themes in the specification. To gain the most from the specification, a number of the sections will
benefit from being taught holistically. For example, algorithms could be taught alongside programming
techniques as there is a close relationship between them.

The specification content in Sections 3.1– 3.7 is presented in a two-column format. The left hand
column contains the specification content that all students must cover, and that is assessed in the
written papers. The right hand column exemplifies the additional information that teachers will require
to ensure that their students study the topic in an appropriate depth and, where appropriate, gives
teachers the parameters in which the subject will be assessed.

We will review the list of supported programming languages annually. The list for the assessment series
will be available from the AQA website at the start of the course, 1 September. For example, the list for
the 2019 assessments will be available on our website from 1 September 2017.

For the summer 2018 assessments we will support the following programming languages:
 • C#
 • Java
 • Pascal/Delphi
 • Python
 • VB.Net.

Schools and colleges will be asked to indicate their programming language when starting to use the
specification and subsequently for each assessment series.

3.1 Fundamentals of algorithms

3.1.1 Representing algorithms
Content Additional information
Understand and explain the term algorithm. An algorithm is a sequence of steps that can be

followed to complete a task.

Be aware that a computer program is an
implementation of an algorithm and that an
algorithm is not a computer program.

Understand and explain the term decomposition. Decomposition means breaking a problem into
a number of sub-problems, so that each sub-
problem accomplishes an identifiable task, which
might itself be further subdivided.

Understand and explain the term abstraction. Abstraction is the process of removing
unnecessary detail from a problem.

Use a systematic approach to problem solving
and algorithm creation representing those
algorithms using pseudo-code and flowcharts.

Any exam question where students are given
pseudo-code will use the AQA standard version.
However, when students are writing their own
pseudo-code they may do so using any form as
long as the meaning is clear and unambiguous.

http://aqa.org.uk/8520

11

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Content Additional information
Explain simple algorithms in terms of their inputs,
processing and outputs.

Students must be able to identify where inputs,
processing and outputs are taking place within
an algorithm.

Determine the purpose of simple algorithms. Students should be able to use trace tables
and visual inspection to determine how simple
algorithms work and what their purpose is.

3.1.2 Efficiency of algorithms
Content Additional information
Understand that more than one algorithm can be
used to solve the same problem.

Compare the efficiency of algorithms explaining
how some algorithms are more efficient than
others in solving the same problem.

Formal comparisons of algorithmic efficiency are
not required.

Exam questions in this area will only refer to time
efficiency.

3.1.3 Searching algorithms
Content Additional information
Understand and explain how the linear search
algorithm works.

Students should know the mechanics of the
algorithm.

Understand and explain how the binary search
algorithm works.

Students should know the mechanics of the
algorithm.

Compare and contrast linear and binary search
algorithms.

Students should know the advantages and
disadvantages of both algorithms.

3.1.4 Sorting algorithms
Content Additional information
Understand and explain how the merge sort
algorithm works.

Students should know the mechanics of the
algorithm.

Understand and explain how the bubble sort
algorithm works.

Students should know the mechanics of the
algorithm.

Compare and contrast merge sort and bubble
sort algorithms.

Students should know the advantages and
disadvantages of both algorithms.

http://aqa.org.uk/8520

12 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.2 Programming
Students need a theoretical understanding of all the topics in this section for the exams even if the
programming language(s) they have been taught do not support all of the topics. Written exams will
always present algorithms and code segments using the current version of the AQA pseudo-code
document, which can be found on the AQA website, although students can present their answers
to questions in any suitable format and do not need to use the AQA pseudo-code when answering
questions.

3.2.1 Data types
Content Additional information
Understand the concept of a data type.

Understand and use the following appropriately:
 • integer
 • real
 • Boolean
 • character
 • string.

Depending on the actual programming
language(s) being used by the students, these
variable types may have other names. For
example real numbers may be described as float.
In exams we will use the general names given in
this specification.

3.2.2 Programming concepts
Content Additional information
Use, understand and know how the following
statement types can be combined in programs:
 • variable declaration
 • constant declaration
 • assignment
 • iteration
 • selection
 • subroutine (procedure/function).

The three combining principles (sequence,
iteration/repetition and selection/choice) are
basic to all imperative programming languages.

Students should be able to write programs using
these statement types. They should be able to
interpret algorithms that include these statement
types.

Students should know why named constants and
variables are used.

http://aqa.org.uk/8520

13

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Content Additional information
Use definite and indefinite iteration, including
indefinite iteration with the condition(s) at the
start or the end of the iterative structure.

A theoretical understanding of condition(s) at
either end of an iterative structure is required,
regardless of whether they are supported by the
language(s) being used.

An example of definite iteration would be:

FOR i 1 TO 5
… Instructions here …

ENDFOR

An example of indefinite iteration with the
condition at the start would be:

WHILE NotSolved
… Instructions here …

ENDWHILE

An example of indefinite iteration with the
condition at the end would be:

REPEAT
… Instructions here …

UNTIL Solved

Use nested selection and nested iteration
structures.

An example of nested iteration would be:

WHILE NotSolved

ENDFOR

ENDWHILE

… Instructions here …

… Instructions here …

… Instructions here …

FOR i 1 TO 5

An example of nested selection would be:

IF GameWon THEN

ENDIF

ENDIF

… Instructions here …

… Instructions here …

… Instructions here …

IF Score > HighScore THEN

Use meaningful identifier names and know why it
is important to use them.

Identifier names include names for variables,
constants and subroutine names.

http://aqa.org.uk/8520

14 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.2.3 Arithmetic operations in a programming language
Content Additional information
Be familiar with and be able to use:
 • addition
 • subtraction
 • multiplication
 • real division
 • integer division, including remainders.

Integer division, including remainders is usually a
two stage process and uses modular arithmetic:

eg the calculation 11/2 would generate the
following values:

Integer division: the integer quotient of 11 divided
by 2 (11 DIV 2) = 5

Remainder: the remainder when 11 is divided by
2 (11 MOD 2) = 1

3.2.4 Relational operations in a programming language
Content Additional information
Be familiar with and be able to use:
 • equal to
 • not equal to
 • less than
 • greater than
 • less than or equal to
 • greater than or equal to.

Students should be able to use these operators
within their own programs and be able to
interpret them when used within algorithms.
Note that different languages may use different
symbols to represent these operators.

In assessment material we will use the following
symbols:

=, ≠, <, >, ≤, ≥

3.2.5 Boolean operations in a programming language
Content Additional information
Be familiar with and be able to use:
 • NOT
 • AND
 • OR.

Students should be able to use these operators,
and combinations of these operators, within
conditions for iterative and selection structures.

3.2.6 Data structures
Content Additional information
Understand the concept of data structures. It may be helpful to set the concept of a data

structure in various contexts that students may
already be familiar with. It may also be helpful to
suggest/demonstrate how data structures could
be used in a practical setting.

Use arrays (or equivalent) in the design of
solutions to simple problems.

Only one and two-dimensional arrays are
required.

Use records (or equivalent) in the design of
solutions to simple problems.

http://aqa.org.uk/8520

15

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.2.7 Input/output and file handling
Content Additional information
Be able to obtain user input from the keyboard.

Be able to output data and information from a
program to the computer display.

Be able to read/write from/to a text file.

3.2.8 String handling operations in a programming language
Content Additional information
Understand and be able to use:
 • length
 • position
 • substring
 • concatenation
 • convert character to character code
 • convert character code to character
 • string conversion operations.

Expected string conversion operations:
 • string to integer
 • string to real
 • integer to string
 • real to string.

3.2.9 Random number generation in a programming language
Content Additional information
Be able to use random number generation. Students will be expected to use random number

generation within their computer programs. An
understanding of how pseudo-random numbers
are generated is not required.

3.2.10 Subroutines (procedures and functions)
Content Additional information
Understand the concept of subroutines. Know that a subroutine is a named ‘out of line’

block of code that may be executed (called) by
simply writing its name in a program statement.

Explain the advantages of using subroutines in
programs.

Describe the use of parameters to pass data
within programs.

Students should be able to use subroutines that
require more than one parameter.

Students should be able to describe how data is
passed to a subroutine using parameters.

Use subroutines that return values to the calling
routine.

Students should be able to describe how data is
passed out of a subroutine using return values.

http://aqa.org.uk/8520

16 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Content Additional information
Know that subroutines may declare their own
variables, called local variables, and that local
variables usually:
 • only exist while the subroutine is executing
 • are only accessible within the subroutine.

Use local variables and explain why it is good
practice to do so.

3.2.11 Structured programming
Content Additional information
Describe the structured approach to
programming.

Students should be able to describe the
structured approach including modularised
programming, clear, well documented interfaces
(local variables, parameters) and return values.

Teachers should be aware that the terms
'arguments' and 'parameters' are sometimes
used but in examinable material we will use the
term 'parameter' to refer to both of these.

Explain the advantages of the structured
approach.

3.2.12 Robust and secure programming
Content Additional information
Be able to write simple data validation routines. Students should be able to use data validation

techniques to write simple routines that check
the validity of data being entered by a user.

The following validation checks are examples of
simple data validation routines:
 • checking if an entered string has a minimum

length
 • checking if a string is empty
 • checking if data entered lies within a given

range (eg between 1 and 10).

Be able to write simple authentication routines. Students should be able to write a simple
authentication routine that uses a username and
password. Students will only be required to use
plain text usernames and passwords (ie students
will not need to encrypt the passwords).

Be able to select suitable test data that covers
normal (typical), boundary (extreme) and
erroneous data.

Be able to justify the choice of test data.

http://aqa.org.uk/8520

17

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.2.13 Classification of programming languages
Content Additional information
Know that there are different levels of
programming language:
 • low-level language
 • high-level language.

Explain the main differences between low-level
and high-level languages.

Students should understand that most computer
programs are written in high-level languages and
be able to explain why this is the case.

Know that machine code and assembly language
are considered to be low-level languages and
explain the differences between them.

Understand that processors execute machine
code and that each type of processor has its own
specific machine code instruction set.

Understand that assembly language is often used
to develop software for embedded systems and
for controlling specific hardware components.

Understand that assembly language has a 1:1
correspondence with machine code.

Understand that ultimately all programming code
written in high-level or assembly languages must
be translated into machine code.

Understand that machine code is expressed in
binary and is specific to a processor or family of
processors.

Understand the advantages and disadvantages
of low-level language programming compared
with high-level language programming.

Understand that there are three common types of
program translator:
 • interpreter
 • compiler
 • assembler.

Explain the main differences between these three
types of translator.

Understand when it would be appropriate to use
each type of translator.

http://aqa.org.uk/8520

18 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.3 Fundamentals of data representation

3.3.1 Number bases
Content Additional information
Understand the following number bases:
 • decimal (base 10)
 • binary (base 2)
 • hexadecimal (base 16).

Understand that computers use binary to
represent all data and instructions.

Students should be familiar with the idea that a
bit pattern could represent different types of data
including text, image, sound and integer.

Explain why hexadecimal is often used in
computer science.

3.3.2 Converting between number bases
Content Additional information
Understand how binary can be used to represent
whole numbers.

Students must be able to represent decimal
values between 0 and 255 in binary.

Understand how hexadecimal can be used to
represent whole numbers.

Students must be able to represent decimal
values between 0 and 255 in hexadecimal.

Be able to convert in both directions between:
 • binary and decimal
 • binary and hexadecimal
 • decimal and hexadecimal.

The following equivalent maximum values will be
used:
 • decimal: 255
 • binary: 1111 1111
 • hexadecimal: FF

3.3.3 Units of information
Content Additional information
Know that:
 • a bit is the fundamental unit of information
 • a byte is a group of 8 bits.

A bit is either a 0 or a 1.
 • b represents bit
 • B represents byte

Know that quantities of bytes can be described
using prefixes.

Know the names, symbols and corresponding
values for the decimal prefixes:
 • kilo, 1 kB is 1,000 bytes
 • mega, 1 MB is 1,000 kilobytes
 • giga, 1 GB is 1,000 Megabytes
 • tera, 1 TB is 1,000 Gigabytes.

Students might benefit from knowing that
historically the terms kilobyte, megabyte, etc
have often been used to represent powers of 2.

The SI units of kilo, mega and so forth refer to
values based on powers of 10. When referring
to powers of 2 the terms kibi, mebi and so forth
would normally be used but students do not
need to know these.

http://aqa.org.uk/8520

19

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.3.4 Binary arithmetic
Content Additional information
Be able to add together up to three binary
numbers.

Students will be expected to use a maximum of
8 bits and a maximum of 3 values to add.

Answers will be a maximum of 8 bits in length
and will not involve carrying beyond the eight
bits.

Be able to apply a binary shift to a binary number. Students will be expected to use a maximum of
8 bits.

Students will be expected to understand and use
only a logical binary shift.

Students will not need to understand or use
fractional representations.

Describe situations where binary shifts can be
used.

Binary shifts can be used to perform simple
multiplication/division by powers of 2.

3.3.5 Character encoding
Content Additional information
Understand what a character set is and be able
to describe the following character encoding
methods:
 • 7-bit ASCII
 • Unicode.

Students should be able to use a given character
encoding table to:
 • convert characters to character codes
 • convert character codes to characters.

Understand that character codes are commonly
grouped and run in sequence within encoding
tables.

Students should know that character codes
are grouped and that they run in sequence. For
example in ASCII ‘A’ is coded as 65, ‘B’ as 66,
and so on, meaning that the codes for the other
capital letters can be calculated once the code
for ‘A’ is known. This pattern also applies to other
groupings such as lower case letters and digits.

Describe the purpose of Unicode and the
advantages of Unicode over ASCII.

Know that Unicode uses the same codes as
ASCII up to 127.

Students should be able to explain the need for
data representation of different alphabets and of
special symbols allowing a far greater range of
characters.

It is not necessary to be familiar with UTF-8,
UTF-16 or other different versions of Unicode.

http://aqa.org.uk/8520

20 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.3.6 Representing images
Content Additional information
Understand what a pixel is and be able to
describe how pixels relate to an image and the
way images are displayed.

Students should know that the term pixel is short
for Picture Element. A pixel is a single point in a
graphical image.

VDUs display pictures by dividing the display
screen into thousands (or millions) of pixels,
arranged into rows and columns.

Describe the following for bitmaps:
 • size in pixels
 • colour depth.

The size of an image is expressed directly as
width of image in pixels by height of image in
pixels using the notation width x height.

Colour depth is the number of bits used to
represent each pixel.

Describe how a bitmap represents an image
using pixels and colour depth.

Students should be able to explain how bitmaps
are made from pixels.

Describe using examples how the number of
pixels and colour depth can affect the file size of
a bitmap image.

Students should be able to describe how higher
numbers of pixels and higher colour depths can
affect file size and should also be able to use
examples.

Calculate bitmap image file sizes based on the
number of pixels and colour depth.

Students only need to use colour depth and
number of pixels within their calculations.

Size bits = W x H x D

Size bytes = W x H x D /8

W = image width

H = image height

D = colour depth in bits.

Convert binary data into a black and white image. Given a binary pattern that represents a black
and white bitmap, students should be able to
draw the resulting image as a series of pixels.

Convert a black and white image into binary data. Given a black and white bitmap, students
should be able to write down a bit pattern that
represents the image.

http://aqa.org.uk/8520

21

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.3.7 Representing sound
Content Additional information
Understand that sound is analogue and that it
must be converted to a digital form for storage
and processing in a computer.

Understand that sound waves are sampled to
create the digital version of sound.

Understand that a sample is a measure of
amplitude at a point in time.

Describe the digital representation of sound in
terms of:
 • sampling rate
 • sample resolution.

Sampling rate is the number of samples taken in
a second and is usually measured in hertz
(1 Hertz = 1 sample per second).

Sample resolution is the number of bits per
sample.

Calculate sound file sizes based on the sampling
rate and the sample resolution.

File size (bits) = rate x res x secs

rate = sampling rate

res = sample resolution

secs = number of seconds

3.3.8 Data compression
Content Additional information
Explain what data compression is.

Understand why data may be compressed and
that there are different ways to compress data.

Students should understand that it is common
for data to be compressed and should be able to
explain why it may be necessary or desirable to
compress data.

Explain how data can be compressed using
Huffman coding.

Be able to interpret Huffman trees.

Students should be familiar with the process of
using a tree to represent the Huffman code.

Students should be able to interpret a given
Huffman tree to determine the code used for a
particular node within the tree.

Be able to calculate the number of bits required
to store a piece of data compressed using
Huffman coding.

Be able to calculate the number of bits required
to store a piece of uncompressed data in ASCII.

Students should be familiar with carrying out
calculations to determine the number of bits
saved by compressing a piece of data using
Huffman coding.

Explain how data can be compressed using run
length encoding (RLE).

Students should be familiar with the process of
using frequency/data pairs to reduce the amount
of data stored.

Represent data in RLE frequency/data pairs. Students could be given a bitmap representation
and they would be expected to show the
frequency and value pairs for each row,

eg 0000011100000011

would become 5 0 3 1 6 0 2 1.

http://aqa.org.uk/8520

22 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.4 Computer systems

3.4.1 Hardware and software
Content Additional information
Define the terms hardware and software and
understand the relationship between them.

3.4.2 Boolean logic
Content Additional information
Construct truth tables for the following logic
gates:
 • NOT
 • AND
 • OR.

Students do not need to know about or use
NAND, NOR and XOR logic gates.

Construct truth tables for simple logic circuits.

Interpret the results of simple truth tables.

Students should be able to construct truth tables
which contain up to three inputs.

Create, modify and interpret simple logic circuit
diagrams.

Students should be able to construct simple logic
circuit diagrams which contain up to three inputs.

Students will only need to use AND, OR and NOT
gates within logic circuits.

Students will be expected to understand and use
the following logic circuit symbols:

http://aqa.org.uk/8520

23

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.4.3 Software classification
Content Additional information
Explain what is meant by:
 • system software
 • application software.

Give examples of both types of software.

Understand the need for, and functions of,
operating systems (OS) and utility programs.

Understand that the OS handles management of
the:
 • processor(s)
 • memory
 • I/O devices
 • applications
 • security.

3.4.4 Systems architecture
Content Additional information
Explain the Von Neumann architecture.

Explain the role and operation of main memory
and the following major components of a central
processing unit (CPU):
 • arithmetic logic unit
 • control unit
 • clock
 • bus.

A bus is a collection of wires through which data
is transmitted from one component to another.
Main memory will be considered to be any form
of memory that is directly accessible by the CPU,
except for cache and registers.

Explain the effect of the following on the
performance of the CPU:
 • clock speed
 • number of processor cores
 • cache size
 • cache type.

Understand and explain the Fetch-Execute cycle. The CPU continuously reads instructions stored
in main memory and executes them as required:
 • fetch: the next instruction is fetched to the

CPU from main memory
 • decode: the instruction is decoded to work

out what it is
 • execute: the instruction is executed (carried

out). This may include reading/writing from/to
main memory.

http://aqa.org.uk/8520

24 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Content Additional information
Understand the differences between main
memory and secondary storage.

Understand the differences between RAM and
ROM.

Students should be able to explain the terms
volatile and non-volatile.

Secondary storage is considered to be any non-
volatile storage mechanism external to the CPU.

Understand why secondary storage is required.

Be aware of different types of secondary storage
(solid state, optical and magnetic).

Explain the operation of solid state, optical and
magnetic storage.

Discuss the advantages and disadvantages of
solid state, optical and magnetic storage.

Students should be aware that SSDs use
electrical circuits to persistently store data but
will not need to know the precise details such as
use of NAND gates.

Explain the term 'cloud storage'. Students should understand that cloud storage
uses magnetic and increasingly solid state
storage at a remote location.

Explain the advantages and disadvantages of
cloud storage when compared to local storage.

Understand the term 'embedded system' and
explain how an embedded system differs from a
non-embedded system.

Students must be able to give examples of
embedded and non-embedded systems.

http://aqa.org.uk/8520

25

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.5 Fundamentals of computer networks
Content Additional information
Define what a computer network is.

Discuss the benefits and risks of computer
networks.

Describe the main types of computer network
including:
 • Personal Area Network (PAN)
 • Local Area Network (LAN)
 • Wide Area Network (WAN).

PAN – only Bluetooth needs to be considered.

LAN – know that these usually cover relatively
small geographical areas.

LAN – know that these are often owned and
controlled/managed by a single person or
organisation.

WAN – know that the Internet is the biggest
example of a WAN.

WAN – know that these usually cover a wide
geographic area.

WAN – know that these are often under collective
or distributed ownership.

Understand that networks can be wired or
wireless.

Discuss the benefits and risks of wireless
networks as opposed to wired networks.

Know that wired networks can use different types
of cable such as fibre and copper and when each
would be appropriate.

Explain the following common network
topologies:
 • star
 • bus.

Students should be able to draw topology
diagrams and explain the differences between
the two topologies. They should also be able to
select the most appropriate topology for a given
scenario.

Define the term ‘network protocol’.

Explain the purpose and use of common network
protocols including:
 • Ethernet
 • Wi-Fi
 • TCP (Transmission Control Protocol)
 • UDP (User Datagram Protocol)
 • IP (Internet Protocol)
 • HTTP (Hypertext Transfer Protocol)
 • HTTPS (Hypertext Transfer Protocol Secure)
 • FTP (File Transfer Protocol)
 • email protocols:

 • SMTP (Simple Mail Transfer Protocol)
 • IMAP (Internet Message Access Protocol).

Students should know what each protocol is
used for (eg HTTPS provides an encrypted
version of HTTP for more secure web
transactions).

Students should understand that Ethernet
is a family of related protocols rather than a
single protocol. They do not need to know the
individual protocols that make up the Ethernet
family. Students should understand that Wi-Fi is
a family of related protocols rather than a single
protocol. They do not need to know the individual
protocols that make up the Wi-Fi family but they
should know that Wi-Fi is a trademark and that
the generic term for networks of this nature is
WLAN.

http://aqa.org.uk/8520

26 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Content Additional information
Understand the need for, and importance of,
network security.

Explain the following methods of network
security:
 • authentication
 • encryption
 • firewall
 • MAC address filtering.

Students should be able to explain, using
examples, what each of these security methods
is and when each could be used.

Students should understand how these methods
can work together to provide a greater level of
security.

Students should understand that MAC address
filtering allows devices to access, or be blocked
from accessing a network based on their physical
address embedded within the device’s network
adapter.

Describe the 4 layer TCP/IP model:
 • application layer
 • transport layer
 • network layer
 • data link layer.

Understand that the HTTP, HTTPS, SMTP, IMAP
and FTP protocols operate at the application
layer.

Understand that the TCP and UDP protocols
operate at the transport layer.

Understand that the IP protocol operates at the
network layer.

Students should be able to name the layers and
describe their main function(s) in a networking
environment.

Application layer: this is where the network
applications, such as web browsers or email
programs, operate.

Transport layer: this layer sets up the
communication between the two hosts and they
agree settings such as ‘language’ and size of
packets.

Network layer: addresses and packages data
for transmission. Routes the packets across the
network.

Data link layer: this is where the network
hardware such as the NIC (network interface
card) is located. OS device drivers also sit here.

Teachers should be aware that the network layer
is sometimes referred to as the internet layer and
that the data link layer is sometimes referred to
as the network interface layer. However, students
will not be expected to know these alternative
layer names.

http://aqa.org.uk/8520

27

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.6 Fundamentals of cyber security
Content Additional information
Be able to define the term cyber security and
be able to describe the main purposes of cyber
security.

Students should know that cyber security
consists of the processes, practices and
technologies designed to protect networks,
computers, programs and data from attack,
damage or unauthorised access.

3.6.1 Cyber security threats
Content Additional information
Understand and be able to explain the following
cyber security threats:
 • social engineering techniques
 • malicious code
 • weak and default passwords
 • misconfigured access rights
 • removable media
 • unpatched and/or outdated software.

Explain what penetration testing is and what it is
used for.

Penetration testing is the process of attempting
to gain access to resources without knowledge of
usernames, passwords and other normal means
of access.

Students should understand that the aim of
a white-box penetration test is to simulate a
malicious insider who has knowledge of and
possibly basic credentials for the target system.

Students should understand that the aim of
a black-box penetration test is to simulate an
external hacking or cyber warfare attack.

http://aqa.org.uk/8520

28 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.6.1.1 Social engineering

Content Additional information
Define the term social engineering.

Describe what social engineering is and how it
can be protected against.

Explain the following forms of social engineering:
 • blagging (pretexting)
 • phishing
 • pharming
 • shouldering (or shoulder surfing).

Students should know that social engineering is
the art of manipulating people so they give up
confidential information.

Blagging is the act of creating and using an
invented scenario to engage a targeted victim in
a manner that increases the chance the victim
will divulge information or perform actions that
would be unlikely in ordinary circumstances.

Phishing is a technique of fraudulently obtaining
private information, often using email or SMS.

Pharming is a cyberattack intended to redirect a
website's traffic to another, fake site.

Shouldering is observing a person's private
information over their shoulder eg cashpoint
machine PIN numbers.

3.6.1.2 Malicious code

Content Additional information
Define the term 'malware'.

Describe what malware is and how it can be
protected against.

Describe the following forms of malware:
 • computer virus
 • trojan
 • spyware
 • adware.

Malware is an umbrella term used to refer to a
variety of forms of hostile or intrusive software.

3.6.2 Methods to detect and prevent cyber security threats
Content Additional information
Understand and be able to explain the following
security measures:
 • biometric measures (particularly for mobile

devices)
 • password systems
 • CAPTCHA (or similar)
 • using email confirmations to confirm a user’s

identity
 • automatic software updates.

http://aqa.org.uk/8520

29

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.7 Ethical, legal and environmental impacts of digital
technology on wider society, including issues of privacy

Content Additional information
Explain the current ethical, legal and
environmental impacts and risks of digital
technology on society. Where data privacy issues
arise these should be considered.

Exam questions will be taken from the following
areas:
 • cyber security
 • mobile technologies
 • wireless networking
 • cloud storage
 • theft of computer code
 • issues around copyright of algorithms
 • cracking
 • hacking
 • wearable technologies
 • computer based implants.

Students will be expected to understand and
explain the general principles behind the issues
rather than have detailed knowledge on specific
issues.

Students should be aware that ordinary citizens
normally value their privacy and may not like it
when governments or security services have too
much access.

Students should be aware that governments and
security services often argue that they cannot
keep their citizens safe from terrorism and other
attacks unless they have access to private data.

3.8 Aspects of software development
The content in this section will be assessed through the non-exam assessment (NEA) element of the
specification.

Content Additional information
Design
Be aware that before constructing a solution,
the solution should be designed, for example
planning data structures for the data model,
designing algorithms, designing an appropriate
modular structure for the solution and designing
the user interface.

Students should have sufficient experience of
successfully structuring programs into modular
parts with clear documented interfaces to enable
them to design appropriate modular structures
for solutions.

Students should have sufficient experience
of successfully including authentication and
data validation systems within their computer
programs.

http://aqa.org.uk/8520

30 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Content Additional information
Implementation
Be aware that the models and algorithms need
to be implemented in the form of data structures
and code (instructions) that a computer can
understand.

Students should have sufficient practice of
writing, debugging and testing programs to
enable them to develop the skills to articulate
how programs work and argue using logical
reasoning for the correctness of programs in
solving specified problems.

Testing
Be aware that the implementation must be
tested for the presence of errors, using selected
test data covering normal (typical), boundary
(extreme) and erroneous data.

Students should have practical experience
of designing and applying test data, normal,
boundary and erroneous to the testing of
programs so that they are familiar with these test
data types and the purpose of testing.

Evaluation/refining
Be aware that code created during
implementation will often require refining as a
result of testing.

Be aware of the importance of assessing how
well the solution meets the requirements of the
problem and how the solution could be improved
if the problem were to be revisited.

Students should have practical experience
of refining programs in response to testing
outcomes.

Students should have practical experience of
assessing how well their solutions meet the
original requirements of the problem.

Students should have practical experience of
explaining how a solution could be improved if
the problem were to be revisited.

3.9 Non-exam assessment

3.9.1 Overview

3.9.1.1 Purpose of non-exam assessment
Non-exam assessment (NEA) allows students to develop their practical skills in a problem-solving
context by coding a solution to a given problem. Non-exam assessment is as much a learning
experience as it is a method of assessment: allowing students to work independently, over a period
of time, extending their programming skills and increasing their understanding of practical, real world
applications of computer science.

Additional information relating to NEA can be found in the teachers’ notes which accompany the NEA
task.

3.9.2 The task

3.9.2.1 Setting the task
We will set the task for the non-exam assessment: this will be available to schools and colleges in
September of the final academic year of the course.

The task will change for each new cohort of students.

It is the responsibility of the teacher to make sure that the correct task is used when preparing their
students.

http://aqa.org.uk/8520

31

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.9.2.2 Taking the task
The task will comprise of a single project which can be undertaken in a period totalling 20 hours. When
completing the task, students must work independently and produce a unique piece of work.

Students must program in one of the high-level programming languages available for use in that year's
NEA task.

The completed task will generate a:
 • program designed, written, tested and refined by the student
 • written report.

Each student must produce their own report, in either hard copy or electronic format (saved to CD).

3.9.2.3 Authentication of students' work
Teachers must be confident that the evidence generated by each student is their own work, has been
completed in 20 hours and as such can authenticate it (see Supervising and authenticating). It is the
centre's responsibility to ensure that the work submitted for assessment is that of the student.

 • Students are not allowed to take the NEA tasks home with them.
 • Students are not allowed to take work on the NEA task home to complete. All work presented for

submission must have been completed under supervised conditions.

3.9.3 Marking the task
Students are free to redraft a piece of work before submitting for final assessment. Once a student's
work has been submitted for final assessment no further amendments can be made.

When marking the task teachers must use the marking criteria in this specification. Further information
about the NEA task marking is available at aqa.org.uk/8520

3.9.3.1 Marking support
Teacher standardising will be available each year to give support in both the taking of the task and
the application of the marking criteria. If you have any queries about the task you are encouraged to
contact us at computerscience@aqa.org.uk

Your centre will be assigned an AQA appointed subject adviser who will be available to assist you in
matters relating to the NEA. Contact details of the adviser appointed to you will be provided when you
inform us that you are using this specification.

When marking the task a level of response mark scheme should be used. A level of response mark
scheme allows you to assess the performance of your students holistically.

3.9.3.2 Using a level of response mark scheme
Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as
instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

http://aqa.org.uk/8520
http://www.aqa.org.uk/8520

32 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Step 1 Determine a level
Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen
in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes
in small and specific parts of the answer where the student has not performed quite as well as the
rest. If the answer covers different aspects of different levels of the mark scheme you should use a
best fit approach for defining the level and then use the variability of the response to help decide the
mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material
it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4
content.

Step 2 Determine a mark
Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the lead examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can
then use this to allocate a mark for the answer based on the lead examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the indicative content to reach the highest level of the mark scheme.

Work which contains nothing of relevance to the task must be awarded no marks.

3.9.4 Marking criteria
The task is assessed in five sections as shown below.

Section Criteria Maximum marks
1 Designing the solution 9

2 Creating the solution 30

3 Testing the solution 21

4 Potential enhancements and refinements 10

5 Overall quality of the report 10

Total 80

http://aqa.org.uk/8520

33

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.9.4.1 Designing the solution (max 9 marks)
Students should articulate their design in a manner appropriate to the task and with sufficient clarity
for a third party to understand how the key aspects of the solution are structured. The emphasis
is on communicating the design; it is acceptable to provide a prose description of the design or
a combination of prose and diagrams. This could include flowcharts, as appropriate, as well as a
description of algorithms, data structures, text file/database structures as appropriate, or using relevant
technical description languages, such as pseudo-code. Where design of a user interface is relevant,
screen shots of actual screens are acceptable.

Level Mark
range

Description

3 7– 9 A comprehensive design which could be used as the basis of an effective
implementation of a complete or almost complete solution.

A comprehensive design which shows good understanding of variables, data
types and structures, as well as how the data will be processed.

Explanations of all or almost all of the main blocks of the proposed solution
including data validation where appropriate.

Design choices are justified with reference to user requirements.

2 4 – 6 A detailed design that describes how most of the key aspects of the solution are
to be structured/are structured.

A largely effective design for the variables, but showing limited understanding of
the potential offered by data types and structures.

Explanations of most of the main blocks of the proposed solution, including the
processing of calculations where appropriate.

Design choices are described.

1 1– 3 A minimal design of what the problem involves.

An incomplete or partially effective design for the variables and/or data structures.

Minimal descriptions of some of the main blocks of the proposed solution
are given, so that it is difficult to obtain a picture of how the solution is to be
structured/is structured without resorting to looking directly at the programmed
solution.

Design choices are stated.

0 0 Nothing worthy of credit.

http://aqa.org.uk/8520

34 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.9.4.2 Creating the solution (max 30 marks)

Completeness of solution (15 marks)
Students should present their complete code listing here. Students need to annotate their code listing
either by using comments within the code or by annotating the listing in some other way. To gain marks
in any particular level it must be clear from looking at the code listing and reading the comments that
the solution demonstrates the requirements of that level.

Level Mark
range

Description

5 13 –15 A solution that meets all or almost all of the requirements of the problem.

The marks at the top end of the level are for solutions that include well
implemented elements of robustness and structured programming.

4 10 –12 A solution that achieves most, but not all of the requirements of the problem. The
solution uses structured programming elements effectively.

The marks at the top end of the level are for solutions that include some elements
of robustness.

3 7– 9 A solution that achieves some of the requirements of the problem.

The marks at the top end of the level are for solutions that include some elements
of structured programming and some data validation.

2 4– 6 A solution that achieves a few requirements of the problem.

The marks at the top end of the level are for solutions that include a minimal
number of elements of structured programming.

1 1– 3 A solution that tackles a few aspects of the problem. Solutions at this level may
not work as intended.

0 0 Nothing worthy of credit.

Programming techniques used (15 marks)
The coding skills listed are indicative of those required by students working at the level indicated. The
lists must not be used as a simple checklist, as some solutions may warrant inclusion at a particular
level even if all of the skills for that level are not evident. For example if constants have not been used
within the solution because their use is not required/appropriate, then the student can still potentially
reach level 2 and above. As such teachers must use a best fit approach when deciding the appropriate
level for a piece of work.

Students should provide program listing(s) that demonstrate their technical skill. The program listing(s)
should be appropriately annotated and, for the higher marks, self-documenting (an approach that
uses meaningful identifiers, with well-structured code whose purpose is apparent without reference to
external documentation).

Students should present their work in a way that will enable a third party to discern the quality and
purpose of the coding. This could take the form of:
 • explanations of particularly difficult-to-understand code sections
 • a careful division of the presentation of the code listing into appropriately labelled sections, to make

navigation as easy as possible for a third party reading the code listing.

Achievement of the latter, to an extent, is linked to the skill in applying a structured approach during the
course of developing the solution.

http://aqa.org.uk/8520

35

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Level Mark
range

Description Indicative coding skills required

5 13 –15 The code demonstrates that the coding
skills required for this level have been
applied sufficiently to demonstrate
proficiency.

Evidence in the code and/or
annotation/comments shows a
successful solution to the problem
that utilises exception handling, data
validation and subroutine interfaces as
appropriate.

Meaningfully named variables (local
and/or global) and any data structures
are effectively used and appropriate to
the solution.

Code is appropriately structured for
ease of maintenance.

Outstanding:
 • subroutines used with appropriate

interfaces
 • cohesive subroutines
 • good exception handling
 • self-documenting code
 • modularisation of code
 • appropriate use of local variables
 • minimal use of global variables
 • appropriate use of data validation
 • appropriate use of constants
 • consistent style throughout
 • meaningful identifier names
 • appropriate indentation
 • annotation used effectively where

required.

4 10 –12 The code demonstrates that the coding
skills required for this level have been
applied sufficiently to demonstrate
proficiency.

Evidence in the code and/or
annotation/comments shows a largely
successful solution to the problem
that utilises modularisation as well
as exception handling and/or data
validation as appropriate.

Meaningfully named variables (local
and/or global) and any data structures
are appropriate to the solution.

Excellent:
 • good exception handling
 • self-documenting code
 • modularisation of code
 • appropriate use of local variables
 • minimal use of global variables
 • appropriate use of data validation
 • appropriate use of constants
 • consistent style throughout
 • meaningful identifier names
 • appropriate indentation
 • annotation used effectively where

required.

3 7– 9 The code demonstrates that the coding
skills required for this level have been
applied sufficiently to demonstrate
proficiency.

Evidence in the code and/or
annotation/comments shows a solution
that solves most of the problem. The
solution utilises modularisation as
appropriate.

Meaningfully named variables (local
and/or global) and any data structures
are appropriate to the solution. The
use of data validation is evident and
appropriate.

Good:
 • modularisation of code
 • appropriate use of local variables
 • minimal use of global variables
 • appropriate use of data validation
 • appropriate use of constants
 • consistent style throughout
 • meaningful identifier names
 • appropriate indentation
 • annotation used effectively where

required.

http://aqa.org.uk/8520

36 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Level Mark
range

Description Indicative coding skills required

2 4 – 6 The code demonstrates that the coding
skills required for this level have been
applied sufficiently to demonstrate
proficiency.

Multiple programming techniques are
used, and there is evidence through
annotation/comments of some
understanding of how to solve the
problem.

Variables with meaningful names
are used effectively throughout the
solution.

Basic:
 • appropriate use of constants
 • consistent style throughout
 • meaningful identifier names
 • appropriate indentation
 • annotation used effectively where

required.

1 1– 3 The code demonstrates that the coding
skills required for this level have been
applied sufficiently to demonstrate
proficiency.

Code statements address at least one
of input, process and output and are
relevant to user requirements with
some minimal comments/annotation.

Variables with meaningful names
are used effectively for parts of the
solution.

Minimal:
 • meaningful identifier names
 • appropriate indentation
 • annotation used effectively where

required.

0 0 Nothing worthy of credit.

3.9.4.3 Testing the solution (max 21 marks)
Testing is taken to mean 'Does the solution work?' and as such it is important that students plan a
series of tests to show that the different sections and elements within their solution work as intended.

Evidence for the testing section may be produced after the system has been fully coded or during
the coding process. It is expected that tests will be planned in a test plan. Only carefully selected
representative samples are required. When carrying out tests it is important that normal (typical),
boundary (extreme) and erroneous data should be used as appropriate.

Students must provide and present in a structured way, for example in tabular form, clear evidence
of testing. This should take the form of carefully selected and representative samples, which
demonstrate the robustness of the complete, or nearly complete, solution and which demonstrate
that the requirements of the solution have been achieved. The emphasis should be on producing a
representative sample in a balanced way and not on recording every possible test and test outcome.

Students should explain the reasons for the tests carried out alongside the evidence for them.

This could take the form of:
 • the test performed
 • its purpose if not self-evident
 • the test data
 • the expected test outcome

http://aqa.org.uk/8520

37

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

 • the actual outcome with a sample of the evidence. For example, screen shots of before and after the
test, etc, sampled in order to limit volume.

Where a test ‘fails’ or highlights an issue with the solution it is important that the solution is refined to
eliminate the ‘failure’ and/or issue. The test should then be repeated to show that the refinement has
succeeded in eliminating the ‘failure’ and/or issue.

Test planning (9 marks)

Level Mark
range

Description

3 7– 9 A thorough representative range of tests have been planned that will demonstrate
the robustness of the solution as well as that the requirements of the problem
have been achieved.

Test data includes normal (typical), boundary (extreme) and erroneous data.
Detailed expected outcomes are given.

The test plan is clear and unambiguous.

2 4 – 6 A representative range of tests have been planned but fall short of demonstrating
that the requirements of the problem have been achieved.

Test data includes some different types from normal (typical), boundary (extreme)
and erroneous data. Expected outcomes are listed.

The test plan is clear.

1 1– 3 A small number of tests have been planned, some of which may be inappropriate.

Some test data and/or expected outcomes may be given.

The test plan may not be entirely clear.

0 0 Nothing worthy of credit.

Testing evidence (12 marks)

Level Mark
range

Description

4 10 –12 Clear evidence is presented, in the form of carefully selected representative
samples, which demonstrates thorough testing has been carried out.

There is an explanation that the evidence demonstrates the robustness of the
complete or nearly complete solution and shows that the requirements of the
problem have been achieved.

3 7– 9 Extensive testing has been carried out, but the evidence presented in the form of
representative samples, does not make clear that all of the core requirements of
the problem have been achieved. This may be due to some key aspects not being
tested or because the evidence is not always presented clearly.

There is an explanation that the evidence presented demonstrates partial
robustness of the solution.

http://aqa.org.uk/8520

38 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

Level Mark
range

Description

2 4 – 6 A range of tests have been carried out and the evidence is presented in the
form of representative samples, but falls well short of demonstrating that the
requirements of the problem have been achieved and that the solution is robust.

The evidence presented is explained.

1 1– 3 A small number of tests have been carried out, which demonstrate that some
parts of the solution work.

The evidence presented is not entirely clear.

0 0 Nothing worthy of credit.

3.9.4.4 Potential enhancements and refinements (max 10 marks)
Evaluation is considered to be 'How well does the solution work, and how could it be better?'

Students should consider and assess how well the solution meets the requirements of the problem and
how the solution could be improved if the problem were to be revisited.

Level Mark
range

Description

5 9 –10 Full consideration given to how well the solution meets all or almost all of
the requirements of the problem. Efficiency of execution and robustness are
discussed.

Improvements to the solution, if the problem were revisited, are discussed.

4 7– 8 Some consideration has been given to how well the solution meets all or almost
all of the requirements of the problem. Efficiency of execution or robustness are
described.

Improvements to the solution, if the problem were revisited, are explained.

3 5 – 6 Consideration has been given to how well the solution meets most of the
requirements of the problem. Where appropriate, some of the requirements that
have not been met have been considered in the evaluation.

Improvements to the solution, if the problem were revisited, are described.

2 3 – 4 Consideration is given to how well the solution meets some of the requirements
of the problem but not all aspects are addressed. There may be omissions, or
some of the requirements may not have been met, and those requirements not
met have been overlooked in the evaluation.

Some potential improvements, if the problem were revisited, have been stated.

1 1– 2 Parts of the solution are evaluated but only in a superficial way.

0 0 Nothing worthy of credit.

http://aqa.org.uk/8520

39

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

3.9.4.5 Overall quality of the report (max 10 marks)
The marks in this section are for the quality of the completed report. The report itself should consist of
the following sections:
 • designing the solution
 • creating the solution
 • testing the solution
 • potential enhancements and refinements.

Each of these sections should contain enough evidence to warrant the award of marks for that section
as detailed within the marking criteria.

Level Mark
range

Description

5 9 –10 The report is complete. All or almost all of the content is relevant to the solution
of the task. A wide range of technical terms have been used accurately. There
is a consistent approach to the structure and layout of the report which enables
easy cross-referencing between sections and between different parts of the
solution. Consistency is evident between the account of design and the coded
implementation, the account of design and execution of testing, and the account
of evaluation and refinement.

4 7– 8 The report is complete. Most of the content is relevant to the solution of the
task. Most of the technical terms used have been used accurately. Most of the
report shows a consistent approach to the structure and layout which enables
easy cross-referencing between most sections and/or different parts of the
solution. Consistency is evident between the account of design, the coded
implementation, the account of design and execution of testing, and the account
of evaluation and refinement.

3 5 – 6 The report is complete in all or almost all respects. A few technical terms have
been used accurately. There is evidence of an attempt to create a report structure
and layout that would enable cross-referencing between one or two sections
and/or different parts of the solution. There is some consistency evident between
at least three of the following: account of design of the solution, the coded
implementation, the account of design and execution of testing, and the account
of evaluation and refinement.

2 3 – 4 At most, one section of the report is missing or incomplete. There is very little
evidence of an attempt to create a report structure and layout that would enable
cross-referencing between sections and/or different parts of the solution. The
report gives some idea of how the solution has been developed and the code
listing is consistent with other sections.

1 1– 2 Two or more sections are missing from the report. There is no evidence of
an attempt to create a report structure and layout that would enable cross-
referencing between sections and/or different parts of the solution. The report
fails to show a clear account of the development of the solution.

0 0 Nothing worthy of credit.

http://aqa.org.uk/8520

40 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

4 Scheme of assessment
Find past papers and mark schemes, and specimen papers for new courses, on our website at
aqa.org.uk/pastpapers

This specification is designed to be taken over two years.

This is a linear qualification. In order to achieve the award, students must complete all assessments at
the end of the course and in the same series.

GCSE exams and certification for this specification are available for the first time in May/June 2018 and
then every May/June for the life of the specification.

All materials are available in English only.

Our GCSE exams in Computer Science include questions that allow students to demonstrate their
ability to:
 • recall information
 • draw together information from different areas of the specification
 • apply their knowledge and understanding.

4.1 Aims and learning outcomes
Courses based on this specification should enable students to:
 • build on their knowledge, understanding and skills established through the computer science

elements of the programme of study for computing at Key Stage 3
 • meet the computer science elements of computing at Key Stage 4
 • enable students to progress into further learning and/or employment
 • understand and apply the fundamental principles and concepts of computer science, including

abstraction, decomposition, logic, algorithms, and data representation
 • analyse problems in computational terms through practical experience of solving such problems,

including designing, writing and debugging programs
 • think creatively, innovatively, analytically, logically and critically
 • understand the components that make up digital systems, and how they communicate with one

another and with other systems
 • understand the impacts of digital technology to the individual and to wider society
 • apply mathematical skills relevant to computer science.

http://aqa.org.uk/8520
http://www.aqa.org.uk/pastpapers

41

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

4.2 Assessment objectives
Assessment objectives (AOs) are set by Ofqual and are the same across all GCSE Computer Science
specifications and all exam boards.

The exams and non-exam assessment will measure how students have achieved the following
assessment objectives.

AO1: Demonstrate knowledge and understanding of the key concepts and principles of computer
science.

AO2: Apply knowledge and understanding of key concepts and principles of computer science.

AO3: Analyse problems in computational terms:
 • to make reasoned judgements; and
 • to design, program, evaluate and refine solutions.

Assessment objective weightings for GCSE Computer Science
Assessment objectives (AOs) Component weightings

(approx %)
Overall weighting
(approx %)

Paper 1 Paper 2 NEA
AO1 6 24 0 30

AO2 22.5 16 1.5 40

AO3 11.5 0 18.5 30

Overall weighting of components 40 40 20 100

4.3 Assessment weightings
The marks awarded on the papers will be scaled to meet the weighting of the components. Students’
final marks will be calculated by adding together the scaled marks for each component. Grade
boundaries will be set using this total scaled mark. The scaling and total scaled marks are shown in the
table below.

Component Maximum raw mark Scaling factor Maximum scaled
mark

Paper 1 80 x2 160

Paper 2 80 x2 160

NEA 80 x1 80

Total scaled mark: 400

http://aqa.org.uk/8520

42 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

5 Non-exam assessment
administration

The non-exam assessment (NEA) for this specification is a practical project.

Visit aqa.org.uk/8520 for detailed information about all aspects of NEA administration.

The head of the school or college is responsible for making sure that NEA is conducted in line with our
instructions and Joint Council for Qualifications (JCQ) instructions.

The non-exam assessment in GCSE Computer Science will represent 20% of the overall grade for
the qualification and should represent 20 hours of work. The requirements for the subject permit this
assessment either to be marked by the awarding organisation, or to be marked by the school or college
and then moderated by the awarding organisation.

The awarding organisations are working together to agree common approaches for monitoring centre
marking, where applicable, in addition to standard moderation procedures. Specifications will be
updated, before teaching of these courses begins, to include information about the processes all
awarding organisations will follow.

5.1 Supervising and authenticating
To meet Ofqual’s qualification and subject criteria:
 • students must sign the Candidate record form (CRF) to confirm that the work submitted is their own
 • all teachers who have marked a student’s work must sign the declaration of authentication on the

CRF. This is to confirm that the work is solely that of the student concerned and was conducted
under the conditions laid down by this specification

 • teachers must ensure that a CRF is provided with each student’s work.

Students must be subject to direct supervision to ensure that the work submitted can be confidently
authenticated as their own. You are permitted to explain or amplify the language used in the NEA task
if students are unable to understand what is required, but you must not explain the computing specific
terminology used. If a student receives additional assistance and this is acceptable within the guidelines
for this specification, you should award a mark that represents the student’s unaided achievement.

Students are free to revise and redraft a piece of work before submitting the final piece for assessment.
You can review draft work and provide generic feedback: explain the context of the task, give advice
on methodology and/or resources that could be used and provide general support on how the task
could be approached such as explaining syntax in general terms, to ensure that student’s work is
appropriately focussed.

Where a student is not able to carry out sufficient work at one stage to enable them to progress to the
next, this should be clearly recorded on the CRF together with details of the support provided. A mark
should be awarded which reflects the student’s unaided work. You can provide advice as follows.

 • Solution design – sufficient support to enable a student to develop a minimal solution that allows the
student to develop a program.

 • Creating the solution – provide explanations of programming code syntax in general terms, however,
this cannot be related to the work in progress.

http://aqa.org.uk/8520
http://www.aqa.org.uk/8520

43

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

 • Testing the solution – provide general indications of aspects of the program that need to be tested
so that students are not prevented from carrying out some testing. You must not tell students to use
normal, erroneous and boundary data for their tests.

 • Potential enhancements and refinements – no support is allowed.
 • Overall quality of report – no support is allowed.

Whilst students may be guided in this way, the final outcome must remain their own. In providing advice
you must not provide templates, model answers, writing frames, specific feedback on how to solve the
problem or correct a student’s work.

A clear distinction must be drawn between providing feedback to students as part of work in progress
and reviewing work once it has been submitted for final assessment. Once work is submitted for final
assessment it may not be further revised and you cannot give (either to individual students or to groups)
feedback and suggestions as to how the work may be improved in order to meet the requirements of
the marking criteria.

Please make a note of all the support the student received on the CRF and sign the authentication
statement. This must be used to support the final mark awarded to the student. If the statement is not
signed, we cannot accept the student’s work for assessment. Teachers are required to keep a log of
the number of hours spent on the NEA task, this must be securely attached to the work of each student
that is submitted for moderation. If any student exceeds 20 hours on the task, this will be considered
to be malpractice, for which a penalty (for example being disqualified from the assessment) will be
applied.

In addition to the requirements outlined above, a member of the senior leadership team in each school
or college will be required to sign a Centre Declaration Sheet (CDS) to confirm that the work is that of
the student, was completed under supervision in 20 hours, and that any support (other than generic
advice) is documented.

5.2 Avoiding malpractice
You must be able to confirm that the work submitted by each student is their own unaided work. To
ensure that this can be done, all work must be completed under formal supervision in the classroom
and appropriate action taken to ensure that students are not able to bring in work produced outside of
the supervised time.

Please inform your students of the AQA regulations concerning malpractice. They must not:
 • take either the NEA task or their work on the NEA task home
 • submit work that is not their own
 • lend work to other students
 • allow other students access to, or use of, their own independently-sourced source material
 • include work copied directly from books, the internet or other sources without acknowledgement
 • submit work that is word-processed by a third person without acknowledgement
 • spend more than 20 hours on their NEA task
 • include inappropriate, offensive or obscene material.

These actions constitute malpractice and a penalty will be given (for example, disqualification).

If you identify malpractice before the student signs the declaration of authentication, you don’t need to
report it to us. Please deal with it in accordance with your school or college’s internal procedures. We
expect schools and colleges to treat such cases very seriously.

http://aqa.org.uk/8520

44 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

If you identify malpractice after the student has signed the declaration of authentication, the head
of your school or college must submit full details of the case to us at the earliest opportunity. Please
complete the form JCQ/M1, available from the JCQ website at jcq.org.uk

We have agreed with Ofqual a date when the externally set assignment papers may be given to
teachers and students. This can be found at aqa.org.uk/timetables

If the papers are released before Ofqual’s agreed date we will treat this as malpractice.

You must record details of any work which is not the student’s own on the front of the assessment
booklet or other appropriate place.

You should consult your exams officer about these procedures.

5.3 Teacher standardisation
We will provide support for using the marking criteria through teacher standardisation.

For further information about teacher standardisation visit our website at aqa.org.uk/8520

In the following situations teacher standardisation is essential. We will send you an invitation to
complete teacher standardisation if:
 • moderation from the previous year indicates a serious misinterpretation of the requirements
 • a significant adjustment was made to the marks in the previous year
 • your school or college is new to this specification.

For further support and advice please speak to your adviser. Email your subject team at
computerscience@aqa.org.uk for details of your adviser.

5.4 Internal standardisation
Once a student has submitted work for final assessment it may not be returned to a student for further
revision.

You must ensure that you have consistent marking standards for all students. One person must manage
this process and they must sign the Centre declaration sheet to confirm that internal standardisation
has taken place.

Internal standardisation may involve:
 • all teachers marking some sample pieces of work to identify differences in marking standards
 • discussing any differences in marking at a training meeting for all teachers involved
 • referring to reference and archive material, such as previous work or examples from our teacher

standardisation.

5.5 Commenting
To meet Ofqual’s qualification and subject criteria, you must show clearly how marks have been
awarded against the assessment criteria in this specification.

Your comments will help the moderator see, as precisely as possible, where you think the students have
met the assessment criteria.

You must record your comments on the Candidate record form.

http://aqa.org.uk/8520
http://www.jcq.org.uk/
http://www.aqa.org.uk/timetables
http://www.aqa.org.uk/8520

45

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

5.6 Submitting marks
You must check that the correct marks are written on the Candidate record form and that the total is
correct.

The deadline for submitting the total mark for each student is given at aqa.org.uk/keydates

5.7 Factors affecting individual students
For advice and guidance about arrangements for any of your students, please email us as early as
possible at eos@aqa.org.uk

Occasional absence: you should be able to accept the occasional absence of students by making sure
they have the chance to make up what they have missed. You may organise an alternative supervised
session for students who were absent at the time you originally arranged.

Lost work: if work is lost you must tell us how and when it was lost and who was responsible, using
our special consideration online service at aqa.org.uk/eaqa

Special help: where students need special help which goes beyond normal learning support, please
use the CRF to tell us so that this help can be taken into account during moderation.

Students who move schools: students who move from one school or college to another during the
course sometimes need additional help to meet the requirements. How you deal with this depends
on when the move takes place. If it happens early in the course, the new school or college should
be responsible for the work. If it happens late in the course, it may be possible to arrange for the
moderator to assess the work as a student who was ‘Educated Elsewhere’.

5.8 Keeping students' work
Students’ work must be kept under secure conditions from the time that it is marked, with completed
CRF. After the moderation period and the deadline for Enquiries about Results (or once any enquiry is
resolved) you may return the work to students.

5.9 Moderation
An AQA moderator will check a sample of your students’ work. Your moderator will contact you to
let you know which students’ work to send to them. If you are entering fewer than 20 students (or
submitting work electronically) it will be the work of all your students. Otherwise it will be a percentage
of your students’ work.

The moderator re-marks the work and compares this with the marks you have provided to check
whether any changes are needed to bring the marking in line with our agreed standards. In some cases
the moderator will ask you to send in more work. Any changes to marks will normally keep your rank
order but, where major inconsistencies are found, we reserve the right to change the rank order.

School and college consortia
If you are in a consortium of schools or colleges with joint teaching arrangements (where students from
different schools and colleges have been taught together but entered through the school or college at
which they are on roll), you must let us know by:
 • filling in the Application for Centre Consortium Arrangements for centre-assessed work, which is

available from the JCQ website jcq.org.uk

http://aqa.org.uk/8520
http://www.aqa.org.uk/keydates
http://www.aqa.org.uk/eaqa
http://www.jcq.org.uk/

46 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

 • appointing a consortium co-ordinator who can speak to us on behalf of all schools and colleges in
the consortium. If there are different co-ordinators for different specifications, a copy of the form
must be sent in for each specification.

We will allocate the same moderator to all schools and colleges in the consortium and treat the
students as a single group for moderation.

All the work must be available at the lead school or college.

5.10 After moderation
We will return your students’ work to you after the exams. You will also receive a report when the
results are issued, which will give feedback on the appropriateness of the tasks set, interpretation of the
marking criteria and how students performed in general.

We will give you the final marks when the results are issued.

To meet Ofqual requirements, as well as for awarding, archiving or standardisation purposes, we may
need to keep some of your students’ work. We will let you know if we need to do this.

http://aqa.org.uk/8520

47

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

6 General administration
You can find information about all aspects of administration, as well as all the forms you need, at
aqa.org.uk/examsadmin

6.1 Entries and codes
You only need to make one entry for each qualification – this will cover all the question papers,
non-exam assessment and certification.

Every specification is given a national discount (classification) code by the Department for Education
(DfE), which indicates its subject area.

If a student takes two specifications with the same discount code:

 • further and higher education providers are likely to take the view that they have only achieved one of
the two qualifications

 • only one of them will be counted for the purpose of the School and College Performance tables – the
DfE's rules on 'early entry' will determine which one.

Please check this before your students start their course.

Qualification title Option AQA entry
code

DfE
discount
code

AQA GCSE in Computer Science Option A (C#) 8520A CK1

Option B (Java) 8520B CK1

Option C (Pascal/Delphi) 8520C CK1

Option D (Python) 8520D CK1

Option E (VB.Net) 8520E CK1

This specification complies with:
 • Ofqual General conditions of recognition that apply to all regulated qualifications
 • Ofqual GCSE qualification level conditions that apply to all GCSEs
 • Ofqual GCSE subject level conditions that apply to all GCSEs in this subject
 • all other relevant regulatory documents.

The Ofqual qualification accreditation number (QAN) is 601/8301/9.

6.2 Overlaps with other qualifications
There are no overlaps with any other AQA qualifications at this level.

http://aqa.org.uk/8520
http://aqa.org.uk/examsadmin

48 Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

6.3 Awarding grades and reporting results
The qualification will be graded on a nine-point scale: 1 to 9 – where 9 is the best grade.

Students who fail to reach the minimum standard for grade 1 will be recorded as U (unclassified) and
will not receive a qualification certificate.

6.4 Re-sits and shelf life
Students can re-sit the qualification as many times as they wish, within the shelf life of the qualification.

6.5 Previous learning and prerequisites
There are no previous learning requirements. Any requirements for entry to a course based on this
specification are at the discretion of schools and colleges.

6.6 Access to assessment: diversity and inclusion
General qualifications are designed to prepare students for a wide range of occupations and further
study. Therefore our qualifications must assess a wide range of competences.

The subject criteria have been assessed to see if any of the skills or knowledge required present any
possible difficulty to any students, whatever their ethnic background, religion, sex, age, disability or
sexuality. If any difficulties were encountered, the criteria were reviewed again to make sure that tests of
specific competences were only included if they were important to the subject.

As members of the Joint Council for Qualifications (JCQ) we participate in the production of the JCQ
document Access Arrangements and Reasonable Adjustments: General and Vocational qualifications.
We follow these guidelines when assessing the needs of individual students who may require an access
arrangement or reasonable adjustment. This document is published on the JCQ website at jcq.org.uk

6.6.1 Students with disabilities and special needs
We can make arrangements for disabled students and students with special needs to help them access
the assessments, as long as the competences being tested are not changed. Access arrangements
must be agreed before the assessment. For example, a Braille paper would be a reasonable adjustment
for a Braille reader but not for a student who does not read Braille.

We are required by the Equality Act 2010 to make reasonable adjustments to remove or lessen any
disadvantage that affects a disabled student.

If you have students who need access arrangements or reasonable adjustments, you can apply using
the Access arrangements online service at aqa.org.uk/eaqa

6.6.2 Special consideration
We can give special consideration to students who have been disadvantaged at the time of the
assessment through no fault of their own – for example a temporary illness, injury or serious problem
such as the death of a relative. We can only do this after the assessment.

Your exams officer should apply online for special consideration at aqa.org.uk/eaqa

For more information and advice about access arrangements, reasonable adjustments and special
consideration please see aqa.org.uk/access or email accessarrangementsqueries@aqa.org.uk

http://aqa.org.uk/8520
http://www.jcq.org.uk/
http://www.aqa.org.uk/eaqa
http://www.aqa.org.uk/eaqa
http://www.aqa.org.uk/access

49

GCSE Computer Science (8520). For exams 2018 onwards. Version 1.0

Visit aqa.org.uk/8520 for the most up-to-date specification, resources, support and administration

6.7 Working with AQA for the first time
If your school or college has not previously offered any AQA specification, you need to register as an
AQA centre to offer our specifications to your students. Find out how at aqa.org.uk/becomeacentre

6.8 Private candidates
This specification is not available to private candidates.

http://aqa.org.uk/8520
http://www.aqa.org.uk/becomeacentre

GCSE
COMPUTER
SCIENCE
(8520)

Specification
For teaching from September 2016 onwards
For exams in 2018 onwards

Version 1.0 15 January 2016

aqa.org.uk

G
00575

Get help and support
Visit our website for information, guidance, support and resources at aqa.org.uk/8520

You can talk directly to the Computer Science subject team

E: computerscience@aqa.org.uk

T: 0161 957 3980

Copyright © 2016 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications, including the specifications. However, schools and colleges registered with AQA are permitted to copy
material from this specification for their own internal use.
AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales (company number
3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

http://aqa.org.uk/8520
mailto:computerscience%40aqa.org.uk?subject=

	1 	Introduction
	1.1 	Why choose AQA for GCSE Computer Science
	1.2 	Support and resources to help you teach
	2 	Specification at a glance
	2.1 	Subject content
	2.2 	Assessments

	3 	Subject content
	3.1 	Fundamentals of algorithms
	3.2 	Programming
	3.3 	Fundamentals of data representation
	3.4 	Computer systems
	3.5 	Fundamentals of computer networks
	3.6 	Fundamentals of cyber security
	3.7 	Ethical, legal and environmental impacts of digital technology on wider society, including issues of privacy
	3.8 	Aspects of software development
	3.9 	Non-exam assessment

	4 	Scheme of assessment
	4.1 	Aims and learning outcomes
	4.2 	Assessment objectives
	4.3 	Assessment weightings

	5 	Non-exam assessment administration
	5.1 	Supervising and authenticating
	5.2 	Avoiding malpractice
	5.3 	Teacher standardisation
	5.4 	Internal standardisation
	5.5 	Commenting
	5.6 	Submitting marks
	5.7 	Factors affecting individual students
	5.8 	Keeping students' work
	5.9 	Moderation
	5.10 	After moderation

	6 	General administration
	6.1 	Entries and codes
	6.2 	Overlaps with other qualifications
	6.3 	Awarding grades and reporting results
	6.4 	Re-sits and shelf life
	6.5 	Previous learning and prerequisites
	6.6 	Access to assessment: diversity and inclusion
	6.7 	Working with AQA for the first time
	6.8 	Private candidates

